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Abstract

Bitmap indices have been widely used in scientific ap-
plications and commercial systems for processing complex,
multi-dimensional queries where traditional tree-based in-
dices would not work efficiently. A common approach for
reducing the size of a bitmap index for high cardinality at-
tributes is to group ranges of values of an attribute into bins
and then build a bitmap for each bin rather than a bitmap
for each value of the attribute. Binning reduces storage
costs, however, results of queries based on bins often re-
quire additional filtering for discarding false positives, i.e.,
records in the result that do not satisfy the query constraints.
This additional filtering, also known as candidate checking,
requires access to the base data on disk and involves signif-
icant I/0 costs.

This paper studies strategies for minimizing the 1/0 costs
for candidate checking for multi-dimensional queries. This
is done by determining the number of bins allocated for
each dimension and then placing bin boundaries in opti-
mal locations. Our algorithms use knowledge of data dis-
tribution and query workload. We derive several analytical
results concerning optimal bin allocation for a probabilis-
tic query model. Our experimental evaluation with real life
data shows an average I/O cost improvement of at least a
factor of 10 for multi-dimensional queries on datasets from
two different applications. Our experiments also indicate
that the speedup increases with the number of query dimen-
sions.

1 Introduction

Modern data warehouse and scientific applications store
large amounts of high-dimensional data. Due to the com-
plexity and the size of these data sets, efficient query pro-
cessing is vital for retrieving results in real time.

Bitmap indexing is a common technique for processing
complex, multi-dimensional ad-hoc queries on read-only

data. They have been introduced into several commercial
DBMS products by database vendors including Red Brick
Systems, Sybase, IBM and Oracle.

The basic bitmap index uses every distinct value of the
indexed attribute as a key for each index, and generates one
bitmap containing as many bits as the number of records
in the dataset for each key [12]. The sizes of these basic
bitmap indices are relatively small for low-cardinality at-
tributes, such as “gender”, “types of houses sold in the San
Francisco Bay Area”, or “car models produced by Ferrari.”
However, for high-cardinality attributes such as “tempera-
ture values in a supernova explosion”, the index sizes may
be too large to be of any practical use. In this case, bitmap
indices are often designed with bins [17]. This bitmap in-
dex strategy partitions the attribute values into a number of
ranges, called bins, and uses bitmap vectors to represent
bins (attribute ranges) rather than distinct values. Although
binning typically reduces storage costs for high-cardinality
attributes, it may increase the access costs of queries that do
not fall on exact bin boundaries. For this kind of queries the
original data values associated with edge bins must be ac-
cessed, in order to check them against the query constraints.

In this paper we are focusing on aggregation queries
that are common in data warehousing and scientific applica-
tions. These types of queries do not return result records but
rather statistical information on the result set, e.g. compute
the size of the result set. Figure 1 shows a small example
of evaluating such queries with binned bitmap indices. In
this example we assume that an attribute A has values be-
tween 0 and 50. The values of the attribute A are given in
the second leftmost column. The range of possible values of
A is partitioned into five sub-ranges (bins), namely [0,10],
[11,20] etc., with a bin allocated to each sub-range. The
values of the sub-ranges are called bin boundaries. In this
example, the width of each bin is of the same size. A ’1-bit”
indicates the attribute value falls into the range, and ”0-bit”
otherwise.

Assume that we want to evaluate the query “Count the
number of rows where 8 < A < 37”. The correct result
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Figure 1. Two-sided range query 8 < A < 37
on a bitmap index with binning.

should be 9. We know that all records that fall into inter-
nal bins (highlighted in light gray) are sure hits (qualify-
ing records). These records are indicated by a “1-bit” and
are calculated by performing a Boolean OR operation on
all internal bins. On the other hand, records that fall into
so-called edge bins (highlighted in dark gray) contain both
qualifying and non-qualifying values. In order to prune the
false positives, the original data values need to be checked
against the query constraint. In particular, all records of the
edge bins with a bit set to “1”, need to be checked. Such
a check may involve additional accesses to disk pages de-
pending on how the attribute values are stored.

Given the query 8 < A < 37, let us look at the candidate
check for the left edge bin. The candidate records are the
records with IDs 1, 4 and 6. The values of these records are
5,9 and 5, respectively. The only qualifying record is record
4 that represents the value 9. The other two records do not
fulfill the query constraint and do not qualify. As we can see
from this small example, the cost of performing a candidate
check on an edge bin is related to the number of “1-bits” in
that bin. The larger the number of candidates that need to
be checked, the higher the total query processing costs.

Our bitmap indexing software called FastBit [7] uses the
binning strategy of this example. FastBit has been used
for High-Energy Physics experiments over the last several
years [20]. Recently we integrated our bitmap index tech-
nology directly into the ROOT analysis framework [16] that
has a user community of some 10,000 scientists around the
world. Based on the experience we gained with the integra-
tion of our software and the feedback from the user com-
munity, we identified the candidate check cost as the main
bottleneck of query processing. Moreover, by studying the
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query workloads of these experiments, we identified certain
patterns that could be helpful for designing more efficient
bitmap indices that take into account both data distributions
and query distributions. Given a fixed number of bins', the
goal is to find the optimal bin boundaries such that the num-
ber of candidates and thus the query processing costs is min-
imized.

Before we outline the main contributions of this paper,
we provide a brief taxonomy of the major work on opti-
mizing bitmap indices based on query access patterns. We
discuss further related work in Section 2.

1.1 Brief Taxonomy of Optimizing Bitmap Indices
Based on Query Access Patterns

In Table 1, most of the previous results in this area are
classified according to the problem dimensionality and the
type of queries considered. Earlier work in the area at-
tempted to adjust bin sizes dynamically as the data is up-
dated ([21]). Most of the later work assumes read-only data
and uses dynamic programming algorithms to achieve opti-
mal bin boundary placement ([10],[15],[14]). In the multi-
dimensional case, additional strategies for speeding up the
queries were studied. These include sophisticated strategies
for pruning the potential subset of candidates using Boolean
operations [17] and dynamically reordering the scanning of
the bitmap indices based on estimated attribute selectivi-
ties [15]. Some more discussion about related work can be
found in Section 2.

1.2 Main Contributions of this Work

In our previous work we introduced OptBin, an algo-
rithm for optimally determining the bin boundaries for
bitmap indices based on data distribution statistics and
query workloads for one-dimensional queries [14]. We also
derived a model OptBinMulti for multi-dimensional queries
and studied the behavior for sythnetic data [15]. In this pa-
per, we extend our research in the following directions:

e We present a detailed performance analysis of Multi-
OptBin for multi-dimensional queries on two different
data sets from applications that are used in production.
The goal is to show that the algorithm not only works
for synthetic data [15] but also for the often more com-
plex case of real data. The results show that our bin-
ning strategy yields significant improvements over tra-
ditional binning methods.

e In the past we allocated the same number of bins for
each attribute (fixed bin allocation). In this paper we

IFor practical reasons the number of bins is often fixed. This guarantees
that the size of the bitmap index is below a certain storage threshold.



One- Dimensional

Multi-dimensional

Queries not considered

Dynamic bucket expansion and contraction [21]

Point Queries
gramming [10]

Optimal binning: dynamic pro-

One-sided range queries

Optimal evaluation strategies for fixed binning and
fixed evaluation order [17]

Two-sided range queries

points [14]

Optimal binning: dynamic pro-
gramming using only query end-

-General problem NP complete [15]

-Optimal query evaluation reordering [15]

-Bin allocation for probabilistic model (current
paper)

-Systematic and extensive experimental evaluation
with real world application data (current paper)

Table 1. Taxonomy of results on optimal binning for bitmap indices.

introduce a probabilistic query model that optimizes
the number of allocated bins (variable bin allocation).
The idea is to use more bins for attributes that appear
more frequently in queries and to use fewer bins for
attributes that appear less frequently. We evaluate this
novel algorithm for real data. The results show fur-
ther performance improvements over the previous al-
gorithm MultiOptBin.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work on bitmap indices and bin-
ning strategies. In Section 3 some of our previous results
on single and multi attribute optimal binning are presented.
In Section 4 we present results for the optimal choice of
bin allocations for a probabilistic query model. In Section
5 we evaluate our novel strategies for optimizing multi-
dimensional queries based on data sets from two different
applications. Finally, in Section 6 we present our conclu-
sions and discuss some future work.

2 Related Work

Bitmap indices are used for speeding up complex, multi-
dimensional queries for On-Line Analytical Processing and
data warehouse [6] as well as for scientific applications
[17]. The first commercial product to use the name bitmap
index is Model 204 [12]. Improvements on this approach
called bit sliced-index are discussed in [13].

In [4, 5] three bitmap encoding strategies are introduced:
equality, range and interval encoding. Equality-encoded
bitmap indices show the best performance for processing
equality queries such as velocity = 108. Range encoding
and interval encoding are optimized for one-sided and two-
sided range queries, respectively. An example of a one-
sided range query is density < 10°. A two-sided range
query, for instance, is 108 < density < 10°.

The authors of [22] represented attribute values in binary
form that yields indices with only [logs | A|] bitmaps, where
|A| is the attribute cardinality. The advantage of this en-
coding scheme is that the storage overhead is smaller than
for interval-encoding. However, in most cases query pro-
cessing is more efficient with interval encoding since in the
worst case only two bitmaps need to be read whereas with
binary encoding always all bitmaps have to be read.

Various bitmap compression schemes were studied in
[2, 9]. The authors demonstrated that the scheme named
Byte-aligned Bitmap Code (BBC) [3] shows the best overall
performance characteristics. More recently a new compres-
sion scheme called Word-Aligned Hybrid (WAH) [19] was
introduced. This compression algorithm significantly re-
duces the overall query processing time compared to BBC.
The main reason for the efficiency of WAH is that it uses a
much simpler compression algorithm.

The bitmap indices discussed so far encode each distinct
attribute value as one bitmap. This technique is very effi-
cient for data values with low attribute cardinalities (low
number of distinct values). However, scientific applica-
tions are often based on data values with high attribute
cardinalities. The work presented in [17] demonstrated
that bitmap indices with binning can significantly speed up
multi-dimensional queries on high-cardinality attributes.

A further bitmap index with binning called range-based
bitmap indexing was introduced in [21]. The idea is
to evenly distribute skewed attribute values onto various
bins in order to achieve uniform search times for differ-
ent queries. The authors demonstrated that the algorithm
efficiently redistributes highly skewed data. However, per-
formance results about query response times were not dis-
cussed.

The work in [10] focuses on one-dimensional point
(equality) queries rather than range queries discussed in this
paper. We extend the work of [10] by analyzing multi-



dimensional range queries.

Binning strategies could also be used to provide his-
togram information. The optimal construction of his-
tograms for range queries that uses binning algorithms and
is discussed in [11, 8]. The main difference between bin-
ning for histograms and our work is that for bitmap indices
precise answers are required. Therefore the objective is
to minimize disk access costs to edge bins. However, in
the histogram case, some statistical techniques can be used
to estimate errors without actual access to original data on
disk.

3 Choosing Optimal Bin Boundaries
3.1 Single-Attribute Case

The OptBin problem for the single attribute case is de-
fined as follows:

Assume a dataset D with one attribute in the range of
[1,n], a set of range queries Q and a constraint k on the
number of bins. Find a set of k — 1 optimal bin boundaries
such that the query processing costs, i.e. the costs of the
candidate check, are minimized.

This problem is solved with a dynamic programming al-
gorithm introduced in [14]. Its time complexity is O(kr?)
where r is the number of distinct query endpoints of queries
in @ and k is the constraint on the number of bins. As
expected, the amount of cost savings (in terms of reduced
I/O costs for candidate check) achieved by the algorithm
increases with the degree of accuracy of our estimations
of data and query distributions. Fortunately, as bitmaps
are mainly used for read-only data, histograms representing
data distribution information can be collected at a minimal
cost during bitmap index construction. Our experience with
scientific data also shows that query distribution can be col-
lected effectively by analyzing workload traces and under-
standing the kind of phenomena the scientists are studying.

3.2 Multi-Attribute Case

The general MultiOptBin problem is defined as follows:

Given a multi-dimensional dataset D, a set of range
queries Q and a constraint k on the total number of bins,
find t integers ki, ko, ...,k where k = Z§=1 k; and lo-
cations for bin boundaries such that k; bins are allocated
for the bitmap index for attribute A; and the total expected
I/O cost of candidate check is minimized.

The multi-dimensional candidate check problem is much
more complex then the single attribute case as several new
factors are introduced. First, before we can deal with bin
boundary placement, we need to decide how many bins
must be allocated for each attribute. This in turn is depen-

dent on several factors such as the likelihood of an attribute
to appear in a query as well as its selectivity.

In general, the total cost of multi-dimensional candi-
date check is a weighted sum of candidate checks costs,
cost(A;), for each attribute A; appearing in the query. The
weights depend on attribute selectivities as each candidate
check results in pruning of the potential candidate subset.
We only need to check candidates that survived all previous
prunings.

The candidate check cost cost(A;) for each attribute A;
is a non-increasing function of k;, the number of bins allo-
cated to A;. Unfortunately, in the general case the function
is not known and depends on the data and query distribu-
tion. It is therefore not surprising that the exact optimal
solution to MultiOptBin is a NP-hard problem as shown in
the next theorem.

Theorem 1 The MultiOptBin is NP-hard even if all queries
in Q include a range for only one attribute and all s;’s (at-
tribute selectivities) are equal.

The proof of this theorem can be found in [15].

A closed-form solution to the multi-dimensional bin al-
location problem can be computed if all cost(A;)’s are dif-
ferentiable functions under a probabilistic model of query
distributions. In Section 4 we show how this solution is
computed.

The strategy we use in our system is an approximation
to the optimal solution and consists of the following stages.
We first determine the number of bins that must be allo-
cated to the bitmap index of each attribute using data and
query statistics and applying the closed form solution men-
tioned above. Using this bin allocation, we proceed to com-
pute optimal bin boundaries by applying the single attribute
dynamic-programming algorithm explained in Section 3.1
separately on each attribute. In our experiments with real
application data presented in Section 5 we show a signifi-
cant speed-up over naive bin allocations using this strategy.

4 Probabilistic Query Model
4.1 The Model

As we showed in Section 3, the cost of candidate check is
reduced when more bins are allocated to the bitmap index.
The reason for this is that with more bins the likelihood of
queries to fall on bin boundaries increases and the expected
number of records per bin (including edge bins) decreases.
Given a constraint on the total number of bins available to
all attributes, the question is how many bins should be allo-
cated to each attribute. In previous work [14, 15], the index
for each attribute uses the same number of bins. However,
it seems intuitive to allocate more bins to attributes which



are more likely to show up in queries as their respective in-
dices will be used more often. In this section we develop
a strategy for allocating bins to attributes based on some
knowledge of the likelihood of these attributes to show up
in queries and also taking into account the selectivities of
the attributes.

Many works on multi-dimensional range queries ( see
for example [1]) describe the query set () by a probabilis-
tic model that assumes attribute independence. This means
that the probability that an attribute A; will show up in a
query, denoted by p;, depends on the attribute itself but is
independent of the other attributes appearing in the query.
For example, in the case of four attributes A, Ao, A3 and
Ay, the probability that a random query will specify only
the attributes A; and A3 is p1 (1 — p2)p3(1 — p4). More for-
mally, for a query g, the probability, pg, it is submitted to the

II i [ [I (1—pi)
Ai€q Aitq
notation A; € ¢ ( 4; ¢ q) denotes that attribute A; is speci-
fied (not specified) in the query ¢g. As shown below, another
factor that affects the bin allocation strategy is attribute se-
lectivity. The selectivity of an attribute A;, denoted by s;,
measures the expected number of records that satisfy the
conditions on A; over all queries of ). We assume that the
query evaluation is done in phases where in each phase the
range condition on one of the attributes is evaluated using
the appropriate bitmap index. In phase 1 all records are still
candidates and in general in phase ¢ + 1 a condition on one
attribute is evaluated for all records which are still candi-
dates after phase ¢. This is illustrated in Figure 2 for 3 at-
tributes where the initial number of records in the database
is IV and the number of candidates that are checked in each
phase is equal to the size of the initial databases multiplied
by the product of the attribute selectivities checked in all
the previous phases. The analysis presented in this section
quantifies this observation.

We assume that the cost of candidate check on attribute
A;, cost(A;), is a function f(k;) of the number of bins, k;,
allocated to it. We denote by C(j, N) the expected cost of
candidate check on j attributes in the order A;, A;_1, .., A3
with k; bins allocated to attribute A; on a database of N
records. It is also assumed that this cost shrinks linearly
with the number of records in the database such that reduc-
ing the size of the database by a factor of s (0 < s <
1) reduces the cost by the same factor, i.e, C(j,sN) =
sC(j, N).

In the following analysis we simply use the notation
C(j) instead of C(j, N) when the size of the database is
known to be N.

Lemma 1: The candidate check cost satisfies the recur-
sive equations

system satisfies p, = where the

C(1) = f(k) (1)
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Figure 2. Query evaluation phases.

Ct) = p(f(ke) + CE = 1)s) + (1 —p)C(t = 1)(2)

Proof: The equation (1) simply denotes the cost of can-
didate checking a single attribute A;. In equation (2), the
first term corresponds to the probability of attribute A, ap-
pearing in a random query. In this case we will search
its bitmap index at a cost f(k;). We then pay the cost of
C(t — 1) on searching the rest of the index on the ¢ — 1 at-
tributes A;_1, A;_o.., A1 with a database size that is a frac-
tion s; of the original one leading to a cost of C'(t — 1)s;
by the linearity assumption of the cost function. The second
term denotes the cost in case attribute A; is not mentioned
in the query; this occurs with probability (1 — p;). Note that
in this case there is no “shrinkage” in the candidate database
and the cost is simply C'(¢t — 1). O

Lemma 2:

C2) = pif(k)(1—pa(l—s2)) +paf(ka) ()
dopif) JT =pi=s0) @

j=i+1

Proof: Proof is by induction on ¢. For the base case of t = 2
we have bin allocations ko and k1 to the two attributes Ao
and Aj, respectively. Assuming the evaluation starts with
attribute A5 we get directly from the definitions

C(2) = p2(f(k2) +prsaf(k1)) + (1 — p2)p1f(k1) (5)

Rearranging the right-hand side, we get equation (3). Equa-
tion (4) follows by assuming equation (4) holds for C'(t—1)
by induction hypothesis and substituting it in equation (2).
O



Theorem 2 Given a query set Q on t attributes. We assume

the order of candidate check evaluation is Ay, Ay_1, ..., Ay

where A; has selectivity s; and probability p; and the can-

didate check cost function f(k;) has the derivative f'(k;)
The optimal bin allocation satisfies:

fl(ki) _ Pi+1 6)
f’(ki+1) Pi(l - p73+1(1 - 3i+1))
forl <i<t.

Proof: The result of the theorem follows by finding the
t

minimum of C(t) subject to the constraint k = > k; using

i=1
Lagrange multiplier techniques. That involves solving the
set of equations

aiki Zpif(la) H (l—Pj(l—Sj))—H\(Zki_k)] -0

=it+1 i=1
@)

k:Zki (8)

From equation 7 we get

t

pif’(ki)jzlll (1=pi(1—=s;))=A ©

forl1 <:<t¢

It follows that

t

pif' (ki) H (1=p;(1—s5))

j=i+1

t
= pisif (ki) [[ (1 =pjra(1=s541))
j=i+2
forl <i<t
(10)
from which the theorem follows. O
In the special case that the cost function f(k;) of search-
ing an attribute A; satisfies f(k;) = O(1/k;) equation (6)
in the above theorem can be presented as:

kit1 \/ Dit1
= (11)
k; pi(1 = pis1(1 = si41))

forl <i<t

(12)

This kind of function behavior is intuitively reasonable for
attributes with close to uniform data distribution where the
cost of candidate checking for an attribute is inversely pro-
portional to the number of bins allocated to that attribute.

To illustrate the above theorem, we show bin allocations
of 1000 bins among four attributes with probabilities 0.1,
0.2, 0.7 and 0.8 (see Figure 3). For all attributes we assume
the same selectivity s. We show the optimal bin allocation
for s ranging between 0 and 1. For example, for selectivity
s = 0.4, the attributes A; to A4 get the following number
of bins allocated 85, 129, 317 and 469 (see dashed line).
Also note that with smaller values of s, the ratio between
the number of bins allocated to A4 and Aj is larger. Further
experimental results are given in Section 5.
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Figure 3. Optimal bin allocation as a function
of candidate selectivity.

S Experimental Results

In this section we evaluate the performance of multi-
dimensional queries that are optimized with our novel
bitmap index strategies. The performance measurements
are based on two different data sets from applications that
are used in production. This guarantees that we evaluate
our strategy on large real data sets as opposed to simplified
synthetic data sets.

The first data set contains network traffic data that was
collected at Berkeley Lab in May 2005. The second data
set is based on a supernova explosion from the Tera Scale
Supernova Initiative [18]. The goal of our experiments is to
compare our binning approach with one of the most com-
monly used binning strategies in production environments
that is called Equi-depth. This binning strategy places the



bin boundaries in such a way that each bin has approxi-
mately the same number of entries. The advantage of equi-
depth binning is that it reduces the worst-case query pro-
cessing costs.

As we have pointed out in the introductory section, the
bottleneck of bitmap indices with bins is the candidate
check. In other words, the higher the number of candidates
that need to be checked against the query constraint, the
higher the query processing costs. Thus, in this section we
use the term query processing costs as a synonym for can-
didate check costs.

5.1 Network Traffic Data

5.1.1 Data Characteristics

The network traffic data set we used for our experiments
contains incoming and outgoing network traffic to and from
Berkeley Lab. The data set includes attributes such as Des-
tinationlP, Sourcel P, DestinationPort, SourcePort, Source-
BytesPerPacket, DestinationBytesPerPacket, StartTime, etc.
The data set contains 10.2 million records and 8 attributes.

5.1.2 One-Dimensional Queries

For our experiments we generated 1,000 random uniformly
distributed queries that cover the whole domain space for
each attribute. For these 1000 queries we ran our optimiza-
tion algorithm and calculated the optimal bin boundaries for
100 bins per attribute. Next, we built the bitmap indices ac-
cordingly. Figure 4 shows the query processing costs for the
binning strategies Opt-binning and Equi-depth binning. The
costs are expressed in terms of the number of candidates
that need to be accessed in the candidate check. The graph
shows the performance of 100 randomly sampled queries
that are sorted according to the costs of Opt-binning. For
all measured attributes, the processing costs of Opt-binning
are, on average, a factor of 3 smaller compared with Equi-
depth.

To show the effect of Opt-binning on the location of the
bin boundaries, we plotted the boundaries of Opt-binning
and compared them with Equi-depth binning (see Figure 5).
For instance, for attribute DestinationPort in Figure 5 (a),
the bin boundaries change significantly starting from bin 25.
Equi-depth binning keeps the bin boundaries equally sized
up to bin 60, whereas Opt-binning changes the bin bound-
aries already with bin 25 to reflect the query distributions.

5.1.3 Multi-Dimensional Queries

Next, we measured the query processing costs for multi-
dimensional queries. Figure 6 shows the cost improvement
factor of Opt-binning over Equi-depth. For 4-dimensional
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Figure 4. Query processing costs for attribute
DestinationPort and SourceBytesPerPacket. Note:
The query processing costs are proportional
to the area of the graph.

queries, the cost improvement of Opt-binning over equi-
depth binning is about a factor of 9. We can also see that
as the number of query dimensions increases, the cost im-
provement increases as well.

5.1.4 Probabilistic Queries

In the next experiment we evaluated our probabilistic query
model for further reducing the query processing costs. In
our previous experiments we used the same number of bins
for each attribute. Now we calculate the optimal number
of bins for each attribute depending on the probability of
it being contained in a multi-dimensional query expression.
This optimization strategy is motivated by the observations
we made during the analysis of real query workloads [14].
In multi-dimensional queries the number of attributes per
query often changes. Thus, different attributes often show
different probabilities of being contained in a certain query
expression. The key idea of calculating the optimal number
of bins is to increase the number of bins for those attributes
that have a higher probability of being contained in a set
of queries. For attributes that have a lower probability, the
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number of bins is reduced.

In order to study this strategy we generated 5000 queries
with up to four dimensions. For each attribute we assumed
a different probability of being contained in the query ex-

pression. Given these probabilities, the optimal number of
bins is calculated according to Equation 11. The selectivity
for all attributes is 0.3. Table 2 shows the probabilities and
the respective optimal number of bins for the four attributes
of our query workload.

Attribute Probability | Opt. #bins
SourcePort 0.8 199
DestinationPort 0.7 123
StartTime 0.2 47
SrcBytesPerPacket | 0.1 31

Table 2. Probabilities for attributes to be con-
tained in a query expression along with the
respective optimal number of bins.

Next, we computed the optimal bin boundaries where
each attribute has a different number of bins (as shown in
Table 2). In addition, we computed the optimal bin bound-
aries where each attribute has 100 bins (as we did in our
previous experiments). The experiments show that calculat-
ing the optimal number of bins reduces the I/O costs by an-
other 30% compared with the optimal strategy where each
attribute has the same number of bins.

5.2 Astrophysics Data

5.2.1 Data Characteristics

The astrophysics data set is one order of magnitude larger
than the network traffic data set. The challenge was to mea-
sure how Opt-binning performs for this large data set of
110 million records and 6 attributes such as x-velocity, y-
velocity, z-velocity, density, pressure and entropy.

Since the number of records of this data set is much
larger than the previous one, we increased the number of
bins to 1000. We also increased the number of queries
to 5000. In addition, we made an important change to
the query distribution according to the following observa-
tion. In our previous work we studied the work load of real
queries from the Sloan Digital Sky Survey [14] and High-
Energy Physics [16]. The main observation is that the query
distributions are often not uniform but centered around ei-
ther the peaks of the data distribution or around the tails.
Thus, we experimented with different query distributions
that follow these basic rules.

5.2.2 One-Dimensional Queries

The distribution of attribute x-velocity follows a Gauss dis-
tribution with 3 peaks centered around 0 (due to space lim-
itations we do not provide a figure). For this attribute we



generated 5000 queries that are centered around 0 and cal-
culated the optimal bin boundaries for 1000 bins accord-
ingly. Figure 7 (a) shows that the query processing costs for
Opt-binning are about a factor of 13 lower than the costs for
Equi-depth.

Next, we generated 5000 queries for attribute y-velocity
that has a similar distribution as attribute x-velocity. How-
ever, rather than centering the query distribution around 0,
we produced a right-skewed distribution where most of the
queries hit the right side (tail) of the data. Also for this kind
of query workload, Opt-binning reduces the query process-
ing costs by more than a factor of 10 compared with Equi-
depth binning (see Figure 7 (b)).
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(a) x-velocity
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50000
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Figure 7. Query processing costs for attribute
x-velocity and y-velocity.

5.2.3 Multi-Dimensional Queries

Finally, we measured the query processing costs for multi-
dimensional queries on two and three attributes. Figure
8 shows the cost improvement factor of Opt-binning over
Equi-depth which is between 11.5 and 17.5. Similar to the
network traffic queries, we can see that as the number of
query dimensions increases, the cost improvement of Opt-
binning increases even more significantly.

Cost improvement factor

10 20 D

Query dimensionality

Figure 8. Cost improvement factor of Op:-
binning over Equi-depth for multi-dimensional
queries.

5.2.4 Probabilistic Queries

In our last set of experiments we analyzed the performance
of our probabilistic query model. We generated 5000 multi-
dimensional queries with randomly chosen query ranges
covering the whole domain space. For each attribute we
assumed a different probability of being contained in the
query expression. We assumed an overall bin constraint of
600 bins. For the set of generated queries we calculated
the average attribute selectivities. We calculated the opti-
mal bin locations such that each of the six attributes gets
100 bins allocated. Next, we calculated the optimal number
of bins by taking into account the attribute probabilities and
selectivities using Equation 11. Table 3 shows the attribute
probabilities and selectivities as well as the optimal number
of bins per attribute. Our experiments showed a 38% im-
provement of the probabilistic optimization over the strat-
egy Opt-binning where each attribute has the same number
of bins.

Attribute | Probability | Selectivity | Opt. #bins
x_velocity | 0.8 0.39 216
y_velocity | 0.8 0.39 156
zvelocity | 0.8 0.42 113
pressure 0.3 0.06 50

density 0.2 0.09 39

entropy 0.2 0.07 31

Table 3. Probabilities for attributes to be con-
tained in a query expression along with the
respective optimal number of bins.



6 Conclusions

In this paper we presented an algorithm for optimizing
the costs of multi-dimensional queries with bitmap indices.
Our approach is based on the following two steps: a) Given
a set of data distributions and a set of query distributions,
find bin allocation for each attribute. b) Find an optimal
placement for the bin boundaries such that the number of
candidates that need to be checked against the query con-
straints is minimized.

We performed both analytical and experimental studies
to evaluate the efficiency of our strategy. Our experiments
were based on two data sets from applications that are used
in production. For the analyzed data sets we achieved a per-
formance improvement in the range of 3 to 17. The results
show that as the number of query dimensions increases, the
efficiency of our algorithm increases as well.

Future work involves testing our optimization techniques
against other binning strategies. A further direction of fu-
ture work is to design bin allocation algorithms for proba-
bilistic queries with attribute dependencies.
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